Copy and Paste  -   An Application to Copy/Paste Text  

 
S.No 5740 Name jj assigment Date/Time 11-Jul-2023 08:43:20 AM

Copy text from below

from mpi4py import MPI
import numpy as np
import time

# Function to perform matrix multiplication
def matrix_multiply(a, b):
    rows_a, cols_a = a.shape
    rows_b, cols_b = b.shape

    if cols_a != rows_b:
        raise ValueError("Cannot perform matrix multiplication. Invalid dimensions.")

    result = np.zeros((rows_a, cols_b), dtype=np.float32)

    for i in range(rows_a):
        for j in range(cols_b):
            for k in range(cols_a):
                result[i, j] += a[i, k] * b[k, j]

    return result


# Initialize MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

# Matrix size
matrix_sizes = [100, 200, 400, 800]

for size in matrix_sizes:
    # Create matrices on process 0
    if rank == 0:
        a = np.random.rand(size, size).astype(np.float32)
        b = np.random.rand(size, size).astype(np.float32)
    else:
        a = None
        b = None

    # Scatter the matrices to all processes
    a = comm.scatter(a, root=0)
    b = comm.scatter(b, root=0)

    # Perform local matrix multiplication
    local_result = matrix_multiply(a, b)

    # Gather all local results on process 0
    result = comm.gather(local_result, root=0)

    # Combine the results on process 0
    if rank == 0:
        final_result = np.sum(result, axis=0)

        # Print the result if desired
        # print(final_result)

# Measure and compare execution times
if rank == 0:
    sequential_times = []
    parallel_times = []

    for size in matrix_sizes:
        # Sequential matrix multiplication
        a = np.random.rand(size, size).astype(np.float32)
        b = np.random.rand(size, size).astype(np.float32)

        start_time = time.time()
        sequential_result = matrix_multiply(a, b)
        end_time = time.time()
        sequential_times.append(end_time - start_time)

        # Parallel matrix multiplication
        start_time = time.time()
        # Create matrices on process 0
        a = np.random.rand(size, size).astype(np.float32)
        b = np.random.rand(size, size).astype(np.float32)

        # Scatter the matrices to all processes
        a = comm.scatter(a, root=0)
        b = comm.scatter(b, root=0)

        # Perform local matrix multiplication
        local_result = matrix_multiply(a, b)

        # Gather all local results on process 0
        result = comm.gather(local_result, root=0)

        # Combine the results on process 0
        final_result = np.sum(result, axis=0)
        end_time = time.time()
        parallel_times.append(end_time - start_time)

    # Print the execution times
    print("Sequential Execution Times:", sequential_times)
    print("Parallel Execution Times:", parallel_times)





comments powered by Disqus
NEW ENTRIES
S.No Name Entry Time/Date
5586 Test11Feb15 14-Feb-2023 10:30:34 PM
5585 Test 8Feb15 14-Feb-2023 10:27:35 PM
5584 Test 3 Feb15 14-Feb-2023 10:24:31 PM
5583 Test 2 Feb15 14-Feb-2023 03:28:53 PM
5582 Test 1 Feb15 14-Feb-2023 03:26:12 PM
5581 asddf 14-Feb-2023 03:25:47 PM
5580 asdf 14-Feb-2023 03:25:40 PM
5579 asdf 14-Feb-2023 03:25:33 PM
5578 asf 14-Feb-2023 03:25:27 PM
5577 asdf 14-Feb-2023 03:25:19 PM
5576 asdf 14-Feb-2023 03:25:13 PM
5575 asdf 14-Feb-2023 03:25:05 PM
5574 asdf 14-Feb-2023 03:24:56 PM
5573 asdf 14-Feb-2023 03:24:50 PM
5572 asdf 14-Feb-2023 03:24:41 PM
5571 asdf 14-Feb-2023 03:24:33 PM
5570 asdf 14-Feb-2023 03:24:23 PM
5569 asdf 14-Feb-2023 03:24:16 PM
5568 asdf 14-Feb-2023 03:24:09 PM
5567 asdf 14-Feb-2023 03:24:01 PM
5566 asf 14-Feb-2023 03:23:52 PM
5565 asdf 14-Feb-2023 03:23:45 PM
5564 asdf 14-Feb-2023 03:23:39 PM
5563 asdf 14-Feb-2023 03:23:29 PM
5562 SEXY BEAST 14-Feb-2023 01:50:38 PM
5561 Test12 FEB14 14-Feb-2023 10:00:44 AM
5560 Test 1 Feb14 14-Feb-2023 09:53:10 AM
5559 MET 13FEB 13-Feb-2023 10:58:36 AM

[First] [Prev] 11 | 12
 
web counter
web counter


To report any error messages or bugs, or other issues, please send email at: info@pakproject.com